Mixed ℋ2/ℋ∞ State-Feedback Control of Continuous-Time Markov Jump Systems with Partial Observations of the Markov Chain
نویسندگان
چکیده
منابع مشابه
State-feedback control of Markov jump linear systems with hidden-Markov mode observation
In this paper, we study state-feedback control of Markov jump linear systems with partial information. In particular, we assume that the controller can only access the mode signals according to a hidden-Markov observation process. Our formulation generalizes various relevant cases previously studied in the literature on Markov jump linear systems, such as the cases with perfect information, no ...
متن کاملRobust H2 control of continuous-time Markov jump linear systems
This paper is concerned with the problem of designing robust H2 state-feedback controllers for continuous-time Markov jump linear systems subject to polytopic-type parameter uncertainty. Based on the parameter-dependent Lyapunov function approach, a new method for designing robust H2 controllers is presented in terms of solutions to a set of linear matrix inequalities. A numerical example is gi...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولOn the Filtering Problem for Continuous-Time Markov Jump Linear Systems with no Observation of the Markov Chain
We consider in this paper the optimal stationary dynamic linear filtering problem for continuous-time linear systems subject to Markovian jumps in the parameters (LSMJP) and additive noise (Wiener process). It is assumed that only an output of the system is available and therefore the values of the jump parameter are not accessible. It is a well known fact that in this setting the optimal nonli...
متن کاملMarkov chain Monte Carlo for continuous-time discrete-state systems
A variety of phenomena are best described using dynamical models which operate on a discrete state space and in continuous time. Examples include Markov (and semiMarkov) jump processes, continuous-time Bayesian networks, renewal processes and other point processes. These continuous-time, discrete-state models are ideal building blocks for Bayesian models in fields such as systems biology, genet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2020.12.011